IFLST 5 Relations

5.1 Establish the properties of the following relations writing sign "+" (yes) or "-" (no) in the appropriate places of this table:

	reflexive	symmetric	transitive	antisymmetric	antireflexive	
$=$						
\neq						
$<$						
\leqslant						
\subseteq						
\mid						
$\\|$						
\perp						
\emptyset						
F						
S						
D						
G						
A						
B						
C						
M						
D						
E						

where the field of $=, \neq,<, \leqslant$ is \mathbb{N},
the field of \subseteq is the powerset of \mathbb{N},
\mid is a relation of divisibility in $\mathbb{N}-\{0\}$.
\perp and $\|$ stand for perpendicularity and parallelity between straight lines on the plane, respectively.
\emptyset is an empty relation,
F is a full relation,
R, S, U stand for the following relations in the set of all people.
$x S y \Leftrightarrow x$ is a son of $y, x D y \Leftrightarrow x$ is a descendant of $y, x G y \Leftrightarrow x$ and y have a common grandmather,
$x A y \Leftrightarrow 2 \mid x+y$ where $x, y \in \mathbb{Z}$,
$x B y \Leftrightarrow 3 \mid x+y$ where $x, y \in \mathbb{Z}$
$x C y \Leftrightarrow 3 \mid x-y$ where $x, y \in \mathbb{Z}$
$x M y \Leftrightarrow n \mid x-y$ where $x, y \in \mathbb{Z}$ and $n \in \mathbb{N}$ is fixed
$x D y \Leftrightarrow x y=4$ where $x, y \in \mathbb{R}$
$x E y \Leftrightarrow\lfloor x\rfloor=\lfloor y\rfloor$ where $x, y \in \mathbb{R}$
5.2 Let $A=\{a, b, c, d, e\}$ and $R=\{(a, a),(a, b),(b, c),(b, d),(a, d),(c, d),(e, e),(a, c),(e, d)\}$. Draw a graph of R. What are the properties of R. How to modify R to make it reflexive, transitive...
5.3 Determine which of the following relations are equivalence relations. Find equivalence classes for those who are.
a) for $x, y \in \mathbb{Z}, x \sim y \Leftrightarrow x+y$ is odd,
b) for $x, y \in \mathbb{Z}, x \sim y \Leftrightarrow x y$ is (i) even (ii) odd,
c) for $x, y \in \mathbb{N}, x, y>1 x \sim y \Leftrightarrow \operatorname{gcd}(x, y)=1$,
d) for $x, y \in \mathbb{N}, x, y>1 x \sim y \Leftrightarrow \operatorname{gcd}(x, y)>1$,
e) for $w(x), u(x) \in \mathbb{R}[x], w(x) \equiv u(x) \Leftrightarrow u(x) \cdot w(x)$ has an even degree,
f) for $x, y \in \mathbb{Z}$ and for $p \in \mathbb{N}, x \sim_{p} y \Leftrightarrow p \mid x+y$. Consider (i) $p=1$, (ii) $p=2$ (iii) $p>2$,
g) for $x, y \in \mathbb{R}, x \sim y \Leftrightarrow x-y$ is of the form $a+b \sqrt{2}$, where $a, b \in \mathbb{Q}$,
h) for $A, B \subseteq \mathbb{Z}, A \sim B \Leftrightarrow A \div B$ is a finite set,
i) for $A, B \subseteq \mathbb{Z}, A \sim B \Leftrightarrow A \cap B=\emptyset$,
j) for $x, y \in \mathbb{R}, x \sim y \Leftrightarrow|x-y|<1$,
k) for $A, B \subseteq X, A \sim B \Leftrightarrow A \cup-B=X$,
l) for $A, B, C \subseteq X, A \sim B \Leftrightarrow A \cap B \supset C$,
m) for $A, B \subseteq \mathbb{N}, A \sim B \Leftrightarrow$ there exists a bijection $f: A \rightarrow B$,
n) for $a, b 0-1$ sequences of length $100 a \sim b \Leftrightarrow|\{i: a(i)=b(i)\}|$ is even,
o) for $(x, y)(z, t) \in \mathbb{R}^{2}(x, y) \sim(z, t) \Leftrightarrow \max (x, y)=\max (z, t)$.
5.4 Let R be an equivalence relation. Is R^{-1} equivalence relation too?
5.5 Let R and S be equivalence relations in a set X. Consider $R \cup S, R \cap S$ and $R \backslash S$. Are they equivalence relations? If so what the connection between equivalence classes of R, S and those of newly defined relation? Is $R \times S$ an equivalent relation on $X \times X$?
5.6 Show that for every partition π of the set X there exists an equivalence relation on X whose equivalence classes are exactly elements of π.
5.7 Let $\mathcal{X}=\{[n ; n+1): n \in \mathbb{Z}\}$. Define an equivalence relation \sim such that $\mathbf{R} / \sim=\mathcal{X}$
5.8 Define an equivalence relation R in plane \mathbb{R}^{2} such that \mathbb{R}^{2} / R is the family of all circles with a center in the origin.

